
High-level C++ Implementation of the
Read-Copy-Update Pattern

Gábor Márton
Eötvös Loránd University,

Faculty of Informatics
Dept. of Programming Languages

and Compilers
H-1117 Pázmány Péter sétány 1/C

Budapest, Hungary
Email: martongabesz@gmail.com

Imre Szekeres
Budapest University of Technology

and Economics
Budapest, Hungary

Email: iszekeres.x@gmail.com

Zoltán Porkoláb
Eötvös Loránd University,

Faculty of Informatics
Dept. of Programming Languages

and Compilers
H-1117 Pázmány Péter sétány 1/C

Budapest, Hungary
Email: gsd@elte.hu

Abstract—Concurrent programming with classical mutex/lock
techniques does not scale well when reads are way more frequent
than writes. Such situation happens in operating system kernels
among other performance critical multithreaded applications.
Read copy update (RCU) is a well know technique for solving the
problem. RCU guarantees minimal overhead for read operations
and allows them to occur concurrently with write operations.
RCU is a favourite concurrent pattern in low level, performance
critical applications, like the Linux kernel. Currently there is
no high-level abstraction for RCU for the C++ programming
language. In this paper, we present our C++ RCU class library
to support efficient concurrent programming for the read-copy-
update pattern. The library has been carefully designed to
optimise performance in a heavily multithreaded environment,
in the same time providing high-level abstractions, like smart
pointers and other C++11/14/17 features.

I. INTRODUCTION

Read-copy-update is a concurrent design pattern [1], [2]
which allows extremely low overhead for readers. Updates
can happen concurrently with reads as they leave the old
versions of the data structure intact; this way the already
existing readers can finish their work. Thus, updates might
require more overhead than reads and their effect might be
delayed. In contrast to readers-writers lock [3] RCU does not
block the writers if there are concurrent readers.

Classical RCU first appeared in the Linux kernel in 2002
[4], [5]. It provides the following reader side primitives:
rcu_read_lock() and rcu_read_unlock(). Read-
side critical sections may use rcu_dereference() to
access RCU protected pointers.

On the update side we may use the
synchronize_rcu() primitive and
rcu_assign_pointer() to assign values to protected
pointer. Pointers stored by rcu_assign_pointer()
can be fetched from within read-side critical sections by
rcu_dereference().

The pseudo code in Figure 1 demonstrates how these
primitives can be used to implement the lookup and the remove
operations on a simple linked list of key-value pairs. This
implementation is a simplified excerpt of McKenney’s pre-
BSD routing table example. With rcu_read_lock() and

SPINLOCK(lock);

Value lookup(List list, Key key) {
Node* node;
Value local_value;
rcu_read_lock();
// iterate over the list and return the value
// of the found element
if (node = find(list, key)) {
local_value = node->value
rcu_read_unlock();
return local_value;

}
rcu_read_unlock();
return not_found;

}

void remove (List list, Key key) {
Node* node;
spin_lock(lock);
// iterate over the list and find the key
if (node = find(list, key)) {
remove_node(list, node);
spin_unlock(lock);
synchronize_rcu();
free(node);
return;

}
spin_unlock(lock);

}

Fig. 1. Usage of RCU in a linked list

rcu_read_unlock() we indicate the reader side critical
section. In this read side critical section we traverse through
the list (find()) and once we found the key we return with
the associated value. In the implementation of find() we
have to use rcu_dereference() to access the elements
in the list. It might happen that the key is not in the list, in
that case we again close the critical section and then return
with a special value indicating the element is not in the list.

In remove() we have to use a spin lock in order to
protect the list from concurrent write operations. The block
which is protected by the spin lock is the write-side critical
section. We iterate over the list trying to find the key and
if we found it then we unlink (remove_node()) it from
the list. In the realization of the remove_node() we have
to use the rcu_assign_pointer() primitive. After the
removal, with the synchronize_rcu() primitive we wait
all pre-existing RCU read-side critical sections to completely



finish. Then we can deallocate the list node which is no longer
needed and this way can close the write-side critical section
by releasing the lock.

Classic RCU requires that read-side critical sections obey
the same rules obeyed by the critical sections of pure spin-
locks: blocking or sleeping of any sort is strictly prohibited.
Since 2002 many different RCU flavours have appeared in
the Linux kernel which relax this strict requirement. Using
realtime RCU [6]–[8] read-side critical sections may be pre-
empted and may block while acquiring spinlocks. Sleepable
RCU allows more, it permits arbitrary sleeping (or blocking)
within RCU read-side critical sections [9], [10].

The different RCU flavours in the Linux kernel are nat-
urally dependent on the kernel internals, for example on
the scheduler. Obviously they cannot be used in user space.
Userspace RCU (URCU) [11], [12] was created in 2009
and has a similar API to the kernel space RCU flavours.
Userspace RCU has different variants and implementations.
For instance the Quiescent-State-Based Reclamation RCU
(QSBR) provides near-zero read-side overhead but the price
of minimal overhead is that each thread in an application is
required to periodically invoke rcu_quiescent_state()
to announce that it resides in a quiescent state [13]. The
general-purpose user space realization can be used in appli-
cations where we cannot guarantee that each threads will in-
voke rcu_quiescent_state() sufficiently often. How-
ever, this versatility has its own price, general-purpose RCU
has to use memory barriers in the read-side. A third variant
uses POSIX signals to eliminate these barriers, obviously this
flavour cannot be used on non-POSIX systems.

URCU provides a low level C API, therefore it is more
prone to errors in C++ programs than a well established high-
level C++ API can be. For instance, it is easy to forget to call
rcu_read_unlock() on all return paths. In URCU there
is no automatic memory reclamation; to deallocate memory,
first we have to use the synchronize_rcu() primitive.

In this paper we present an alternative implementation for
user space RCU as a C++ smart pointer, thus there is no
need to manually deallocate memory. Our realization provides
a high-level abstraction C++ API to the users, so they can
use a simple construct which is not prone to errors, still its
performance is satisfying for most of the use cases. Our paper
is organized as follows. In section II we present the steps
which lead from using a mutex to the concept of a high-level
smart pointer for the RCU semantics. We describe the details
and difficulties with the implementation of the smart pointer in
III. Section IV contains the description of our testing methods.
We write about ongoing and future work in section V. Our
paper concludes in VI.

II. TOWARDS A HIGHER LEVEL ABSTRACTION FOR RCU

Let us suppose we have a collection that is shared among
multiple readers and writers in a concurrent manner (Figure
2). It is a common way to make the collection thread safe
by holding a lock until the iteration is finished (on the reader
thread). This approach does not scale well, especially when

class X {
std::vector<int> v;
mutable std::mutex m;

public:
int sum() const { // read operation
std::lock_guard<std::mutex> lock{m};
return std::accumulate(v.begin(), v.end(),

0);
}
void add(int i) { // write operation
std::lock_guard<std::mutex> lock{m};
v.push_back(i);

}
};

Fig. 2. A shared collection

class X {
std::shared_ptr<std::vector<int>> v;
mutable std::mutex m;

public:
X()

: v(std::make_shared<
std::vector<int>>()) {}

int sum() const { // read operation
std::shared_ptr<std::vector<int>>

local_copy;
{
std::lock_guard<std::mutex> lock{m};
local_copy = v;

}
// assume processing the data takes longer
// than copying it
return std::accumulate(local_copy->begin(),

local_copy->end(),
0);

}
void add(int i) { // write operation
std::shared_ptr<std::vector<int>>

local_copy;
{
std::lock_guard<std::mutex> lock{m};
local_copy = v;

}
local_copy->push_back(i);
{
std::lock_guard<std::mutex> lock{m};
v = local_copy;

}
}

};

Fig. 3. Using a shared pointer in the collection

reads are way more frequent than writes [5]. Instead of a
simple lock_guard we could use a readers-writers lock [3],
but that would scale badly as well, especially when we have
multiple concurrent writers [5].

The first idea to make it better is to have a shared pointer
and hold the lock only until that is copied by the reader or
updated by the writer (Figure 3). Now we have a race on the
pointee itself during the write. So we need to have a deep
copy (Figure 4). The copy construction of the underlying data
(vector<int>) is thread safe, since the copy constructor
parameter is a constant reference to vector<int>.

Still, there is one more problem: if there are two concurrent
write operations then we might miss one of them. We should
check whether the other writer had done an update after the
actual writer has loaded the local copy. If it did then we should
load the data again and try to do the update again. This leads
to the idea of using an atomic_compare_exchange in
a while loop. We could use an atomic_shared_ptr if



void add(int i) { // write operation
std::shared_ptr<std::vector<int>> local_copy;
{

std::lock_guard<std::mutex> lock{m};
local_copy = v;

}
auto local_deep_copy =

std::make_shared<std::vector<int>>(
*local_copy);

local_deep_copy->push_back(i);
{

std::lock_guard<std::mutex> lock{m};
v = local_deep_copy;

}
}

Fig. 4. Deep copy

1 class X {
2 std::shared_ptr<std::vector<int>> v;
3
4 public:
5 X()
6 : v(std::make_shared<
7 std::vector<int>>()) {}
8 int sum() const { // read operation
9 auto local_copy = std::atomic_load(&v);

10 return std::accumulate(local_copy->begin(),
11 local_copy->end(),
12 0);
13 }
14 void add(int i) { // write operation
15 auto local_copy = std::atomic_load(&v);
16 auto exchange_result = false;
17 while (!exchange_result) {
18 // we need a deep copy
19 auto local_deep_copy =
20 std::make_shared<std::vector<int>>(
21 *local_copy);
22 local_deep_copy->push_back(i);
23 exchange_result =
24 std::atomic_compare_exchange_strong(
25 &v, &local_copy, local_deep_copy);
26 }
27 }
28 };

Fig. 5. Using atomic shared pointer

that was included in the current C++ standard, but until then
we have to be satisfied with the free function overloads for
shared_ptr (Figure 5). These free function overloads take a
simple shared_ptr as a parameter and perform the specific
atomic operations:

template <class T>
std::shared_ptr<T> atomic_load(

const std::shared_ptr<T> *p);

template <class T>
bool atomic_compare_exchange_strong(

std::shared_ptr<T> * p,
std::shared_ptr<T> * expected,
std::shared_ptr<T> desired);

Note, atomic_shared_ptr class template which would
replace these free functions might be included in the C++20
standard [14]. Since both during the read operation and the
write operation we do not modify the pointee the element
type of the member shared_ptr can be changed to be a
constant:

class X {
std::shared_ptr<const std::vector<int>> v;
// ...

};

In the write operation we do the update on the copy of the
original pointee (line 22 of Figure 5) and not on the pointee

class X {
rcu_ptr<std::vector<int>> v;

public:
X()

: v(std::make_shared<
std::vector<int>>()) {}

int sum() const { // read operation
std::shared_ptr<const std::vector<int>>

local_copy = v.read();
return std::accumulate(local_copy->begin(),

local_copy->end(),
0);

}
void add(int i) { // write operation
v.copy_update([i](std::vector<int> *copy) {
copy->push_back(i);

});
}

};

Fig. 6. Usage of rcu ptr

of the member.
We might notice that we can move construct the third pa-

rameter of atomic_compare_exchange_strong, there-
fore we can spare a reference count increment and decrement:

exchange_result =
std::atomic_compare_exchange_strong(

&v, &local_copy,
std::move(local_deep_copy));

Regarding the write operation, since we are
already in a while loop we could replace
atomic_compare_exchange_strong with
atomic_compare_exchange_weak. That can result in
a performance gain on some platforms [15], [16]. However,
atomic_compare_exchange_weak can fail spuriously1.
Consequently, we might do the deep copy more often than
needed if we used the weak counterpart.

In the current form of class X nothing stops an other
programmer (e.g. a naive maintainer of the code years later)
to add a new reader operation, like this:

int another_sum() const {
return std::accumulate(v->begin(), v->end(),

0);
}

This is definitely a race condition and a problem. To avoid
this user error and to hide the sensitive technical details
we created a smart pointer which we named as rcu_ptr.
This smart pointer provides a general higher level abstraction
above atomic_shared_ptr. Figure 6 represents how can
we use rcu_ptr in our running example. The read()
method of rcu_ptr returns a shared_ptr<const T>
by value, therefore it is thread safe. The existence of the
shared_ptr in the scope enforces that the read object will
live at least until this read operation finishes. By using the
shared pointer this way, we are free from the ABA problem
[17], [18] since the memory address associated with the object
cannot be reused until the object itself is reclaimed [19]. The
copy_update() method receives a lambda. This lambda is
called whenever an update needs to be done, i.e. it will be
called continuously until the update is successful. The lambda

1Spurious failure enables implementation of compare-and-exchange on a
broader class of machines, e.g., load-locked store-conditional machines [15]



1 template <typename T> class rcu_ptr {
2 std::shared_ptr<const T> sp;
3
4 public:
5 rcu_ptr() = default;
6 ˜rcu_ptr() = default;
7
8 rcu_ptr(const rcu_ptr &rhs) = delete;
9 rcu_ptr &

10 operator=(const rcu_ptr &rhs) = delete;
11 rcu_ptr(rcu_ptr &&) = delete;
12 rcu_ptr &operator=(rcu_ptr &&) = delete;
13
14 rcu_ptr(const std::shared_ptr<const T> &sp_)
15 : sp(sp_) {}
16 rcu_ptr(std::shared_ptr<const T> &&sp_)
17 : sp(std::move(sp_)) {}
18
19 std::shared_ptr<const T> read() const {
20 return std::atomic_load_explicit(
21 &sp, std::memory_order_consume);
22 }
23
24 void
25 reset(const std::shared_ptr<const T> &r) {
26 std::atomic_store_explicit(
27 &sp, r, std::memory_order_release);
28 }
29 void reset(std::shared_ptr<const T> &&r) {
30 std::atomic_store_explicit(
31 &sp, std::move(r),
32 std::memory_order_release);
33 }
34
35 template <typename R>
36 void copy_update(R &&fun) {
37
38 std::shared_ptr<const T> sp_l =
39 std::atomic_load_explicit(
40 &sp, std::memory_order_consume);
41
42 std::shared_ptr<T> r;
43 do {
44 if (sp_l) {
45 // deep copy
46 r = std::make_shared<T>(*sp_l);
47 }
48
49 // update
50 std::forward<R>(fun)(r.get());
51
52 } while (
53 !std::
54 atomic_compare_exchange_strong_explicit(
55 &sp, &sp_l,
56 std::shared_ptr<const T>(
57 std::move(r)),
58 std::memory_order_release,
59 std::memory_order_consume));
60 }
61 };

Fig. 7. The rcu ptr class template

receives a T* for the copy of the actual data. We can modify
the copy of the actual data inside the lambda.

III. SMART POINTER FOR RCU SEMANTICS

In Figure 7 we present the implementation of the rcu_ptr
class template. We provide a default constructor and a de-
fault destructor (lines 5 and 6). The move and copy oper-
ations are deleted (lines 8-12) because rcu_ptr is essen-
tially a wrapper around an atomic type (we plan to support
atomic_shared_ptr as soon as it is included in the
standard). And all atomic types are neither copyable nor
movable (because there is no sense to assign meaning for an
operation spanning two separately atomic objects) [20], [21].

We can create an rcu_ptr from an lvalue or rvalue
reference of shared_ptr<const T> (lines 14-17). These
functions just simply copy or move their parameter into the

member shared_ptr. There is no need to make these
constructors thread safe, because the construction can be done
only by one thread.

Lines 24-33 is the realization of the reset() methods
which receive a shared_ptr<const T> as an lvalue or
rvalue reference parameter. We can use it to reset the wrapped
data to a new value independent from the old value (e.g.
vector.clear() ). Actually, with the parameter we over-
write the currently contained shared_ptr. The overwrite
has to be an atomic operation in order to protect the member
from concurrent reset() calls.

In lines 19-22, the read() method atomically loads the
member shared_ptr and returns with a copy of that. The
copy_update() function template (lines 35-60) receives
an rvalue reference to an instance of a callable type. First
we create a local copy of the member as sp_l (lines 38-
40). If this local copy is set (i.e the rcu_ptr instance is
initialized) then we create a deep copy, that is we copy the
pointee itself and we create a new shared_ptr<T> (denoted
as r) pointing to the copy (lines 44-47). Note, that this is a
non-constant shared pointer. On line 50 we call the callable
and we pass a non-constant pointer to the new copy as a
parameter. Then in lines 53-59 we exchange the member
shared pointer with a shared_ptr to the deep copy if we
find that the member still points to the same object of which
we created the copy. If it turns out that is not the case (i.e.
another thread was faster), then we repeat the whole deep
copy update sequence until we succeed (line 43). The callers
of the copy_update() function must be aware that in case
of an unset (or default initialized) rcu_ptr the callable will
be called with a null pointer as an argument. Also, a call
expression with this function is invalid, if the wrapped data
type (T) is a non-copyable type.

A. Memory Ordering

A memory_order_release store is said to synchro-
nize with a memory_order_acquire load if that load
returns the value stored or in some special cases, some later
value [15], [22]. When a memory_order_release store
synchronizes with a memory_order_acquire load, any
memory reference preceding the memory_order_release
store will happen before any memory reference following
the memory_order_acquire load [15], [22]. This prop-
erty allows a linked structure to be locklessly traversed
by using memory_order_release stores when updat-
ing pointers to reference new data elements and by us-
ing memory_order_acquire loads when loading point-
ers while locklessly traversing the data structure [22]. A
memory_order_release store is dependency ordered be-
fore a memory_order_consume load when that load re-
turns the value stored, or in some special cases, some later
value [15], [22]. Then, if the load carries a dependency to some
later memory reference, any memory reference preceding the
memory_order_release store will happen before that
later memory reference [15], [22]. This means that when there
is dependency ordering, memory_order_consume gives



the same guarantees that memory_order_acquire does,
but at lower cost [22].

In the classical RCU, the rcu_dereference() primitive
implements the notion of a dependency ordered load, which
suppresses aggressive code-motion compiler optimizations and
generates a simple load on any system other than DEC Alpha,
where it generates a load followed by a memory-barrier
instruction. The rcu_assign_pointer() primitive im-
plements the notion of store release, which on sequentially
consistent and total-store-ordered systems compiles to a simple
assignment [11].

In our implementation of rcu_ptr::copy_update()
function we can also use the release and consume seman-
tics. We cannot use relaxed ordering because in case of
that if the fun is inlined and fun itself is not an or-
dering operation or it does not contain any fences then
the load or the compare exchange might be reordered
into the middle of fun. Also we need to ”see” the lat-
est updates so we can copy and update the ”most re-
cent” version. Though, there is a data dependency chain:
sp_l->r->compare_exchange(...,r). So if all the
architectures were preserving data dependency ordering, than
we would be fine with relaxed. However, some architec-
tures do not preserve data dependency ordering (e.g. DEC
Alpha), therefore we need to explicitly state that we rely
on that neither the CPU nor the compiler will reorder
data dependent operations. This is what we express with
the consume-release semantics. Consequently, during all the
atomic load operations in the rcu_ptr class template we
can use memory_order_consume and during all atomic
store operations (including the read-modify-write operation)
we use memory_order_release. If the definition of the
fun callable is unseen by the compiler (i.e. it is defined in an
other translation unit) then the user have to annotate the decla-
ration of the callable with the [[carries_dependency]]
attribute [15]. Otherwise, the compiler may assume that the
dependency chain is broken during the call and consequently it
would fall back to the safer but less efficient acquire semantics
[15].

Unfortunately the consume memory order is temporarily
deprecated in C++17. It is widely accepted that the current
definition of memory_order_consume in the C++11/14
standard is not useful. All current compilers essentially map
it to memory_order_acquire. The difficulties appear to
stem both from the high implementation complexity and
from the fact that the current definition uses a fairly general
definition of ”dependency” [22], [23]. As such, the consume
ordering has to be redefined. While this work is in progress,
hopefully ready for the next revision of C++, users are
encouraged to not use this ordering and instead use acquire
ordering, so as to not be exposed to a breaking change in the
future. As for our rcu_ptr, in order to reach the consume
semantics we plan to use hardware specific instructions in the
future to overcome the mentioned problem.

B. Lock Free atomic shared ptr

Our rcu_ptr relies on the free functions over-
loads with the atomic_ prefix [15, section 20.8.2.6]
for std::shared_ptr. It would be nice to use an
atomic_shared_ptr [14], but currently that is still in
experimental phase. We use atomic shared_ptr opera-
tions which are implemented in terms of a spinlock (that
is how it is implemented in the currently available stan-
dard libraries). Having a lock-free atomic_shared_ptr
would be really beneficial. However, implementing a lock-free
atomic_shared_ptr in a portable way can have extreme
difficulties [24]. Though, it might be easier on architectures
where the double word CAS operation is available as a
CPU instruction as we can see that with Anthony Williams
implementation [25].

IV. CORRECTNESS AND TESTING

To validate the correctness of our data structure we used
different testing methods. We executed unit tests in a se-
quential manner (i.e. no parallel execution) to validate the
basic behaviour of the class template. We used oriented stress
testing [26] and sanitizers from the LLVM/Clang infrastructure
[27] to verify behaviour during concurrent execution. During
our stress tests we focused on pairs of public methods of
rcu_ptr and we executed these functions from different
threads. We executed the operations in a loop on each thread
and we added random delays in between each calls. This way
we tested different execution timings and we could make race
windows slightly larger.

V. FUTURE WORK

It is our ongoing work to create concrete and precise perfor-
mance measurements. We aim to measure the performance of
our rcu_ptr on a weekly ordered architecture like ARMv7.
Our target is to do measurements on different dimensions
because the performance may depend on the architecture,
the number of reader or writer threads, the ratio of the
readers/writers, the size of the wrapped data, etc. Also, we
plan to compare our implementation with URCU and readers-
writers lock in different use cases. The complexity and the
huge variegation of possible measurements drive us to publish
the future results in a different paper.

VI. CONCLUSION

RCU is a technique in concurrent programming which is
getting used more and more often nowadays. It has been
introduced in the Linux kernel first, but the efficiency of
the technique became proven so people demanded an im-
plementation which could be used in user space too. The
current available user space RCU solutions do not provide
a mechanism for automatic memory reclamation, also they
provide a low level C API, which may be prone to errors.
In this paper we presented a high-level C++ implementation
for the read-copy-update pattern, which provides automatic
memory deallocation while providing a safer and hard-to-
misuse API.



ACKNOWLEDGMENT

The authors would like to thank to Péter Bolla for having
valuable discussions about the implementation, and the public
interface. We would like to thank also to for Máté Cserna, for
his really helpful comments on the library implementation.

REFERENCES

[1] P. E. McKenney and J. D. Slingwine, “Read-copy update: Using execu-
tion history to solve concurrency problems,” in Parallel and Distributed
Computing and Systems, 1998, pp. 509–518.

[2] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russell, D. Sarma,
and M. Soni, “Read-copy update,” in AUUG Conference Proceedings.
AUUG, Inc., 2001, p. 175.

[3] J. M. Mellor-Crummey and M. L. Scott, “Scalable reader-writer
synchronization for shared-memory multiprocessors,” SIGPLAN Not.,
vol. 26, no. 7, pp. 106–113, Apr. 1991. [Online]. Available:
http://doi.acm.org/10.1145/109626.109637

[4] P. E. McKenney and J. Walpole, “What is RCU, fundamentally?”
December 2007, available: http://lwn.net/Articles/262464/ [Viewed De-
cember 27, 2007].

[5] P. E. McKenney, Is Parallel Programming Hard, And,
If So, What Can You Do About It? Corvallis,
OR, USA: kernel.org, 2010. [Online]. Available:
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

[6] P. McKenney, “The design of preemptible read-copy-update,” October
2007, available: http://lwn.net/Articles/253651/ [Viewed October 25,
2007].

[7] P. E. McKenney, D. Sarma, I. Molnar, and S. Bhattacharya, “Extending
rcu for realtime and embedded workloads,” in Ottawa Linux Symposium,
pages v2, 2006, pp. 123–138.

[8] P. E. McKenney and D. Sarma, “Adapting rcu for real-time operating
system usage,” Oct. 23 2007, uS Patent 7,287,135.

[9] P. E. McKenney, “Sleepable RCU,” October 2006,
available: http://lwn.net/Articles/202847/ Revised:
http://www.rdrop.com/users/paulmck/RCU/srcu.2007.01.14a.pdf
[Viewed August 21, 2006].

[10] D. Guniguntala, P. E. McKenney, J. Triplett, and J. Walpole, “The read-
copy-update mechanism for supporting real-time applications on shared-
memory multiprocessor systems with Linux,” IBM Systems Journal,
vol. 47, no. 2, pp. 221–236, May 2008.

[11] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and
J. Walpole, “User-level implementations of read-copy update,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 2, pp.
375–382, 2012.

[12] M. Desnoyers, “[RFC git tree] userspace RCU (urcu) for Linux,”
February 2009, http://lttng.org/urcu.

[13] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole, “Performance
of memory reclamation for lockless synchronization,” J. Parallel Distrib.
Comput., vol. 67, no. 12, pp. 1270–1285, 2007.

[14] H. Sutter, “Atomic smart pointers, rev. 1,” ISO/IEC JTC 1, Information
Technology, Subcommittee SC 22, Programming Language C++, Tech.
Rep. n4162, Oct. 2014.

[15] ISO, ISO/IEC 14882:2014 Information technology — Programming
languages — C++. Geneva, Switzerland: International Organization
for Standardization, 2014.

[16] stackoverflow.com, “Understanding
std::atomic::compare exchange weak() in c++11,” 2017. [Online].
Available: https://goo.gl/jwjgGC

[17] R. K. Treiber, Systems programming: Coping with parallelism. Inter-
national Business Machines Incorporated, Thomas J. Watson Research
Center, 1986.

[18] D. Dechev, P. Pirkelbauer, and B. Stroustrup, “Understanding and
effectively preventing the aba problem in descriptor-based lock-free
designs,” in Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC), 2010 13th IEEE International Symposium on.
IEEE, 2010, pp. 185–192.

[19] A. Williams, “Why do we need atomic shared ptr?” August
2015, available: https://www.justsoftwaresolutions.co.uk/threading/why-
do-we-need-atomic shared ptr.html.

[20] Anthony Williams, C++ concurrency in action: practical multithread-
ing. Manning Publ., 2012.

[21] stackoverflow.com, “Why are std::atomic objects not copyable?” 2017.
[Online]. Available: https://goo.gl/fvuY3f

[22] P. E. McKenney, T. Riegel, J. Preshing, H. Boehm, C. Nelson,
O. Giroux, and L. Crowl, “Towards implementation and use of mem-
ory order consume,” ISO/IEC JTC 1, Information Technology, Subcom-
mittee SC 22, Programming Language C++, Tech. Rep. P0098R0, 2015.

[23] H.-J. Boehm, “Temporarily deprecate memory order consume,”
ISO/IEC JTC 1, Information Technology, Subcommittee SC 22,
Programming Language C++, Tech. Rep. P0371R0, May 2016.

[24] M. McCarty, “Implementing a lock-free atomic shared ptr,” 2016,
cppNow 2016. [Online]. Available: https://goo.gl/qErf1h

[25] A. Williams, “Implementation of a lock-free atomic shared ptr
class template as described in n4162,” 2016. [Online]. Available:
https://bitbucket.org/anthonyw/atomic shared ptr

[26] M. Desnoyers, “Proving the correctness of nonblocking data structures,”
Communications of the ACM, vol. 56, no. 7, pp. 62–69, 2013.

[27] llvm.org. (2017) clang: a c language family frontend for llvm. [Online].
Available: http://clang.llvm.org


