
Compile-Time Function Call Interception to Mock Functions in C/C++

Compile-Time Function Call Interception
to Mock Functions in C/C++

Gábor Márton Zoltán Porkoláb
Eötvös Loránd University, Faculty of Informatics
Dept. of Programming Languages and Compilers

H-1117 Pázmány Péter sétány 1/C Budapest, Hungary
martongabesz@gmail.com gsd@elte.hu

Abstract
In C/C++, test code is often interwoven with the production code
we want to test. During the test development process we often have
to modify the public interface of a class to replace existing de-
pendencies; e.g. a supplementary setter or constructor function is
added for dependency injection. In many cases, extra template pa-
rameters are used for the same purpose. These solutions may have
serious detrimental effects on the code structure and sometimes on
the run-time performance as well. We introduce a new technique
that makes dependency replacement possible without the modifi-
cation of the production code, thus it provides an alternative way
to add unit tests. Our new compile-time instrumentation technique
enables us to intercept function calls and replace them in runtime.
Contrary to existing function call interception (FCI) methods, we
instrument the call expression instead of the callee, thus we can
avoid the modification and recompilation of the function in order
to intercept the call. This has a clear advantage in case of system
libraries and third party shared libraries, thus it provides an alter-
native way to automatize tests for legacy software. We created a
prototype implementation based on the LLVM compiler infrastruc-
ture which is publicly available for testing.

Keywords C++ programming language, unit testing, function call
interception, compiler instrumentation

1. Introduction
In legacy code bases often there are few or no unit tests. Refactor-
ing such code in order to provide tests is almost impossible because
we cannot verify correctness without having unit tests; hence it is a
vicious circle. We can break the circle with non-intrusive tests, i.e.
without actually modifying the production code. Function call in-
terception (FCI) is often the only tool which enables non-intrusive
testing by making it possible to replace function bodies. By replac-
ing functions we can eliminate the unwanted dependencies in tests.

Eliminate unwanted dependencies is necessary during testing of
new software systems as well. There may be cases when we do not
want to widen the public interface of a class or when we do not

[Copyright notice will appear here once ’preprint’ option is removed.]

want to promote the concrete type to a class template just because
of testing.

With FCI we are able to intercept function calls at runtime and
we can execute actions before and/or after the original function
body or even completely replace it. The different FCI methods have
different advantages and disadvantages. Dynamic methods are not
always applicable (think about intercepting inline functions of C++
member functions). In the same time some dynamic solutions have
minimal runtime overhead. Static methods vary from preprocessor
techniques to modifying the generated binary. Working before run-
time, they have much more freedom for intercession.

Compared to languages like Java, the C and C++ languages of-
fer less mature solutions for FCI. Java runtime reflection allows
us both introspection and intercession. Aspect-oriented program-
ming defines non-intrusive joint points (which could be function
call sites), advices (like before, after and around) and pointcuts
(predicates matching the joint points) grant us to replace functions
[23]. Early attempts have been made to implement aspect-oriented
frameworks for C++ [8, 50], but they are less popular.

In this paper, we investigate a new compile-time instrumenta-
tion based FCI technique for C/C++ programs which enables the
replacement of functions and methods. Our approach complements
the existing FCI methods, with it we can synthesise tests for C/C++
code in a non-intrusive way. By applying the instrumentation, the
generated binary code will be different than the original binary
program code, but the high-level C/C++ source code remains un-
touched. Contrary to other instrumentation methods, we instrument
the call expression instead of the callee, thus we can avoid the ne-
cessity of recompilation of the function we would like to intercept.
This has a clear advantage in case of system libraries, third party
shared libraries and security critical applications where we have to
evade library interposing. We implemented a prototype based on
the LLVM/Clang compiler infrastructure. We demonstrate how the
use of our method simplifies dependency replacement for the use-
case of writing unit tests for legacy systems. We also evaluate the
performance of the prototype by using various benchmarks.

This paper is organized as follows. In Section 2, we show the
existing dynamic and static FCI methods. In Section 3, we present
general test automation patterns and concepts for testing legacy
code. We present how our method simplifies writing unit tests for
legacy systems in Section 4. We describe our new interception
technique in details in Section 5 in details. Section 6 contains the
evaluation of the performance of our prototype. In Section 7, we
describe the current limitations and possible future work. We have
an overview of the related works in Section 8. Our paper concludes
in Section 9.

Compile-Time Function Call Interception to Mock Functions in C/C++ 1 2018/2/7

2. Function Call Interception Techniques
We differentiate the FCI techniques based on the time FCI is ap-
plied [22]. Dynamic techniques perform the interception at pro-
gram load-time or at runtime. Contrary to dynamic approaches,
static techniques achieve FCI by modifying the source files (e.g.
with the help of the preprocessor), by changing the linkage order,
by generating object files which contains the instrumentation or
by modifying the application binary image; all these modifications
happen before runtime.

2.1 Load-time FCI
Most modern operating systems provide the possibility to spec-
ify shared objects to be loaded before all others. This can be
used to selectively override functions in other shared objects. On
Linux this behavior is controlled by the LD_PRELOAD environment
variable [33]. With this technique, calling the original function is
cumbersome. We have to use dlsym auxiliary function with the
RTLD_NEXT argument [32]. In case of C++ functions we have to
provide the mangled names. Furthermore, this mechanism is unre-
liable with member functions, because the member function pointer
is not expected to have the same size as a void pointer on some plat-
forms [21].

2.2 Run-time FCI
In Unix like systems, runtime dynamic interception is implemented
with the help of the ptrace system call [35, 44, 45]. If ptrace is
used with the PEEKTEXT or POKETEXT argument then it is possible
to attach to a running process and to read or write different seg-
ments of its memory. For instance, the GNU debugger (gdb) [16]
and Intel Pin [31] both use this approach. A disadvantage of these
tools is that they rely on a specific kernel functionality; thus port-
ing these implementations to other operating systems may be hard.
E.g. Intel Pin currently does not support function replacement on
macOS [20]. Another property of this technique is that we cannot
instrument inline functions.

2.3 Pre-compilation-time FCI
We consider some use of the C/C++ preprocessor as pre-compilation-
time interception. A typical use case is to replace the malloc and
the free functions from the standard C library [47]:

void *my_malloc(size_t size) {
//...
return malloc(size);

}

void my_free(void *p) {
//...
return free(p);

}

#define free my_free
#define malloc my_malloc

void SystemUnderTest() {
int *array = (int *)malloc(4 * sizeof(int));
// do something with array
free(array);

}

This approach can be applied conveniently in C, but not in C++. As
soon as we use namespaces, the preprocessor might generate code
which cannot be compiled because of the ambiguous use of names.
Hazardous side effects of macros are also well known.

2.4 Link-time FCI
One example for the link-time static interception is the wrap com-
mand line option of the GNU linker (ld) [15]. When this pro-
gram option is applied then the linker uses a wrapper function

for the specified symbol, any undefined reference to symbol will
be resolved to __wrap_symbol and any undefined reference to
__real_symbol will be resolved to symbol. This approach makes
it possible to replace a function and call the original. However, in
case of C++ we have to specify the mangled names as symbols. We
cannot use this approach if the symbol is defined within the very
same translation unit where it is referenced.

2.5 Post-compilation-time FCI
There exist tools to modify the compiled binary code for intercep-
tion. As an example, in [3] the authors describe a method which is a
mixture of Link-time and Post-compilation-time techniques used to
avoid typical security vulnerabilities, like buffer overflow. A mod-
ified compiler can be applied on a binary executable (or shared
library) to extract type information from the debugging data and
reinsert it in the same binary which is then available at runtime in
a special data structure. At runtime a pre-loaded shared library in-
tercepts the possibly dangerous calls and validates them using the
data structure stored in the first step.

2.6 Compile-time FCI
Perhaps the most widely used static FCI technique is to configure
the compiler to emit instrumented code in a way that interception
is possible. The GNU/GCC and LLVM/Clang compilers both pro-
vides the -finstrument-function program option to instrument
each and every function call in a way to execute code before and
after the body of the functions [9, 14]. Actually, when this instru-
mentation is enabled then the compiler emits two extra calls for
each function body. The prototypes of these two called functions
are the following:

void __cyg_profile_func_enter(void *this_fn,
void *call_site);

void __cyg_profile_func_exit(void *this_fn,
void *call_site);

The arguments for these functions represent the address of the
original function and the address of the instruction from where it
was called. A serious drawback of this technique is that we cannot
replace an intercepted function with another function; the original
function will be called anyway.

2.7 Hybrid FCI techniques
XRay [4, 26], a function call tracing system allows engineers to
get accurate function call traces with negligible overhead when off
and moderate overhead when on, suitable for services deployed in
production. XRay enables efficient function call entry/exit logging
with high accuracy timestamps, and can be dynamically enabled
and disabled.

XRay uses a mixture of compile-time and run-time FCI tech-
niques. It relies on compiler changes to insert no-op sleds in func-
tion entry/exits, and record those locations in tables encoded in the
object files. At runtime, if XRay is disabled, these no-op sleds are
executed as-is and add minimal execution overhead. However, if
XRay is enabled, the XRay runtime library overwrites these no-
ops with calls to instrumentation code that logs function entry/exit
information to in-memory buffers. XRay is a special purpose in-
strumentation, it is not a general FCI framework; therefore is it not
possible to replace functions with it.

3. Test Automation Conventions
The above presented FCI techniques maybe used in the process
of creating automated tests. Thus, in this section we discuss the
general test automation patterns and we show the more specialized
concepts about testing legacy code. Note, the presented general

Compile-Time Function Call Interception to Mock Functions in C/C++ 2 2018/2/7

test automation patterns maybe used during writing tests for legacy
code.

3.1 General Test Automation Patterns
The four-phase test pattern is driven by the observation that each
test require some sort of setup and tear down routines. This pattern
splits each test into four phases [39]:

• In the first phase, we set up everything that is required for the
system under test (SUT) to exhibit the expected behavior.

• In the second phase, we interact with the SUT.
• In the third phase, we do whatever is necessary to determine

whether the expected outcome has been obtained.
• In the fourth phase, we tear down the test to put the world back

into the state in which we found it.

This pattern is also know as the build-operate-check-clear pattern
[51].

The given-when-then pattern of representing tests is originated
from behaviour-driven development [43]. The essential idea is to
break down writing a test into three sections [11]:

• The given part describes the pre-conditions to the test. In these
pre-conditions we present the state of the world before we begin
the behavior we specify in the test.

• The when section represents the behaviour we specify.
• The then section describes the changes we expect due to the

specified behavior.

We can also look at this pattern as a reformulation of the four-phase
test pattern. Essentially these three states are equal to the first three
states of the four-phase pattern.

In the context of the four-phase pattern, Robert C. Martin states
that anyone who reads the tests should be able to work out what
they do very quickly, without being misled or overwhelmed by de-
tails [36]. Consequently, both the four-phase and the given-when-
then patterns imply that the test setup should be strictly part of the
visible test code and should not be separated from the rest of the
test code. For instance, using load-time FCI to set up a test sepa-
rates the ”given” phase from the rest of the test code, thus it violates
both patterns and makes the test hard to understand.

3.2 Testing Legacy Code
Unwanted dependencies embody a critical problem in software de-
velopment; we often have to break existing dependencies before
we can change some piece of code [47]. Breaking existing depen-
dencies is also an important prerequisite to introduce unit tests for
legacy code [10].

A seam is an abstract concept introduced by Feathers to identify
points where we can break dependencies [10]. The goal is to have a
place where we can alter the behaviour of a program without mod-
ifying it in that place; this is important because editing the source
code is often not an option [47]. Feathers, Rüegg and Sommerlad
define four different kinds of seams for C++ [10, 40, 47]:

1. Link seam: Change the definition of a function via some linker
specific setup.

2. Preprocessor seam: With the help of the preprocessor, redefine
function names to use an alternative implementation.

3. Object seam: Based on inheritance to inject a subclass with an
alternative implementation.

4. Compile seam: Inject dependencies at compile-time through
template parameters.

// Turtle.hpp

class Turtle {
int x = 0, y = 0;

public:
void PenUp() { /* ... */ }
void PenDown() { /* ... */ }
void Forward(int distance) { /* ... */ }
void Turn(int degrees) { /* ... */ }
void GoTo(int x, int y) { /* ... */ }
int GetX() const { return x; }
int GetY() const { return y; }

};

class Painter {
Turtle turtle;

public:
void DrawLine(int x0, int y0, int x1, int y1) {

turtle.GoTo(x0, y0);
turtle.PenDown();
turtle.GoTo(x1, y1);
turtle.PenUp();

}
// ...

};

Figure 1. A hypothetical legacy graphics program

The enabling point of a seam is the place where we can make the
decision to use one behaviour or another. Different seams have dif-
ferent enabling points. For example, replacing the constructor ar-
gument for the implementation of an interface with a mock im-
plementation when a unit test is set up is an object seam with the
constructor as an enabling point.

Link and preprocessor seams can be used to write non-intrusive
tests. However, object and compile seams may be used for such
purpose only if the unit under test already has the proper archi-
tecture. For example, in case of object seams the unit must have a
constructor (or setter) function to setup a different implementation
for the dependency. In case of compile seams, the unit must be a
template and it must have a template parameter via which we can
mock the dependency. Often, these architectural requirements are
not satisfied, therefore the use of object and compile seams ofttimes
demand that we intrusively change the source code of the unit.

Some seams are realized with FCI techniques. For instance,
preprocessor seams are implemented with pre-compilation-time
FCI. Link seams are realized with load-time and link-time FCI. The
existence of compile-time, post-compile-time and run-time FCI
drives us to further extend the list of existing seams. We define a
new class of seams, the FCI seams. More specifically we introduce
three new seams for each FCI technique: compile-time FCI seam,
post-compile-time FCI seam and run-time FCI seam.

4. Compile-time FCI Seam
In Figure 1 we present a hypothetical legacy graphics program that
relies on a LOGO-like API for drawing. The API is realized as a
class named the Turtle. Also, there is Painter class which is
responsible for drawing lines and shapes. This class has a hard-
wired dependency on the concrete Turtle class. Still, we would
like to write a test which checks the DrawLine() function. In
this hypothetical example let us suppose that the turtle functions
are quite expensive to use. Generally speaking, a dependency may
represent a database, or a network connection, whose usage can be
hard, or very expensive. Therefore, in our test we want to mock the
Turtle class (or at least its member functions).

Our new instrumentation technique makes it possible to write
non-intrusive tests easily. Figure 2 lists the test which uses our new
instrumentation method. We define our mock class (MockTurtle)

Compile-Time Function Call Interception to Mock Functions in C/C++ 3 2018/2/7

1

2 #include "Turtle.hpp"
3 #include <gmock/gmock.h>
4 #include <access_private.hpp>
5 #include <hook.hpp> // for SUBSTITUTE
6

7 class MockTurtle {
8 public:
9 MOCK_METHOD0(PenUp, void());

10 // PenDown, Forward, ...
11 };
12

13 MockTurtle& GetMockObject(Turtle*) {
14 static MockTurtle m;
15 return m;
16 }
17

18 namespace proxy {
19 void PenUp(Turtle* self) {
20 return GetMockObject(self).PenUp();
21 }
22 // Similarly to PenDown, Forward, ...
23 }
24

25 struct TurtleTest : ::testing::Test {
26 TurtleTest() {
27 SUBSTITUTE(Turtle::PenUp, proxy::PenUp);
28 // Similarly to PenDown, Forward, ...
29 }
30 };
31

32 ACCESS_PRIVATE_FIELD(Painter, Turtle, turtle)
33

34 TEST_F(TurtleTest, TestDrawLine) {
35 using ::testing::AtLeast;
36

37 Painter painter;
38 Turtle& turtle = access_private::turtle(painter);
39 MockTurtle& mockTurtle = GetMockObject(&turtle);
40

41 EXPECT_CALL(mockTurtle, PenDown())
42 .Times(AtLeast(1));
43 painter.DrawLine(0, 0, 10, 10);
44 }
45

46 int main(int argc, char **argv) {
47 ::testing::InitGoogleTest(&argc, argv);
48 return RUN_ALL_TESTS();
49 }

Figure 2. Testing the legacy graphics program with compile-time
FCI

with the help of the gmock macros (lines 7-11). Our test-case is
defined from line 34 to 44. In the test-case we create an instance
of the Painter class, then we get a reference to its private turtle
member (line 38). Note that there are several different techniques to
access a private member, we use a method which relies on explicit
template instantiations [37]. Then we get a reference to an instance
of the MockTurtle class which acts as a test double for the Turtle
instance (line 39). We state our expectations as we would do with
any other regular mock objects (lines 41-42). In line 43 we exercise
our unit under test by calling the DrawLine() method.

With the help of our tool we setup replacement functions for
each member function of the Turtle class (lines 27-28). These
replacement functions behave as a proxy; they forward each func-
tion call on a given Turtle instance to a corresponding test double
(lines 18-23). The way we get the reference for a relevant test dou-
ble is pretty simple in this test: we return a reference to a static
instance of the MockTurtle class (lines 13-16). We can use this
simplification because we know that there is only one Turtle ob-
ject over the lifetime of our test-case. If there were several Turtle
objects then we should solve the mapping differently, perhaps with
the help of a static hash map. Lines 46-49 contains the definition

for the main() function which uses the functions and macros from
googletest to initialize and run the test.

The most important property of this test is that the test setup is
included in the test application itself. During the compilation of our
test binary we have to include a header file from our auxiliary run-
time library which provides the SUBSTITUTE macro, and we have
to enable the mentioned instrumentation with a compiler switch.
Also, during linking we have to link with our given runtime library.

Our method has clear advantages compared to the LD_PRELOAD
approach where we can substitute functions only if they are defined
in shared libraries. With our technique it is possible to write non-
intrusive tests and replace even inline functions. However, this new
method requires rebuilding the application (or unit) we want to test
with the specific compiler option which will disable inlining. Our
technique has the following advantages:

• The test setup is part of the test application and clearly visible
together with the rest of the test code. This way it does not
violate the given-when-then test automation pattern and best
practices.

• It does not introduce a new tool into the existing build chain.
The functionality is embedded into the compiler.

• On platforms where the compiler is supported, the new instru-
mentation could be supported as well.

• There is no need to use mangled names.
• We can use the ordinary unit test building tools and we can

group unit tests into the same test application.

5. FCI with Call Expression Instrumentation
Our new interception technique and the prototype 1 consists of two
parts: a compiler instrumentation module and a runtime library.
The instrumentation module modifies the code to check whether
a function has to be replaced or not. The runtime library provides
functions to setup the replacements.

5.1 Instrumentation
During the code generation we modify each and every function
call expression to call an auxiliary function. Let us consider the
following function call expression of foo:

foo(args...);

When our instrumentation is in action, the emitted code is equal to
the following pseudo code:

char* funptr = __fake_hook(&foo);
if (funptr) {

funptr(args...);
} else {

foo(args...);
}

The call to __fake_hook resolves at runtime if we should replace
the callee with another function or not. We replace a function if
the returned value of __fake_hook is not zero, in this case the
returned value is a pointer to the function we call as a substitution.
If the return type of the callee function is not void then we create
an additional storage for the return value:

char* funptr = __fake_hook(&foo);
using ReturnType = decltype(foo(args...);
ReturnType ret;
if (funptr) {

ret = funptr(args...);
} else {

ret = foo(args...);

1 https://github.com/martong/finstrument mock

Compile-Time Function Call Interception to Mock Functions in C/C++ 4 2018/2/7

define i32 @ Z3bari(i32 %p) #0 {
entry:
%fake hook result = tail call i8∗

@ fake hook(i8∗ bitcast (i32 (i32)∗@ Z3fooi to i8∗))
%0 = icmp eq i8∗ %fake hook result, null
br i1 %0, label %else, label %then

then: ; preds = %entry
%1 = bitcast i8∗ %fake hook result to i32 (i32)∗
%subst fun result = tail call i32 %1(i32 %p)
br label %cont

else: ; preds = %entry
%call = tail call i32 @ Z3fooi(i32 %p)
br label %cont

cont: ; preds = %else, %then
%call res.0 = phi i32 [%subst fun result, %then], [%call, %else]
ret i32 %call res.0
}

Figure 3. LLVM IR for function replacement

}
return ret;

Our prototype is based on LLVM/Clang [24, 27]. The imple-
mentation modifies the emitted LLVM Intermediate Representation
(IR) [28] code. For instance, let us consider the following definition
of the bar C++ function:

int foo(int);

int bar(int p) {
return foo(p);

}

The LLVM IR of bar after optimization looks like this:

define i32 @_Z3bari(i32 %p) #0 {
entry:

%call = tail call i32 @_Z3fooi(i32 %p)
ret i32 %call

}

The generated code is very straightforward: there is only one basic
block (entry) which stores the return value from the call of foo
and then it returns with it. Note that the function names are mangled
thus we see the _Z3 prefix for the function names.

When we enable our instrumentation and optimization, then the
IR has the form presented in Figure 3. Now we have four different
basic blocks. The first block (entry) evaluates the return value of
the __fake_hook function, compares it to zero and emits a branch
based on the comparison. The then block is executed if the callee
shall be replaced. We call the substituting function pointer, then we
jump to the last basic block(cont). The else block is executed if
the callee shall not be substituted; we just simply call the original
function then jump to the cont block. At last, in the cont block,
we store the result of either the callee or the replaced function, and
we return with that.

Clang’s internal architecture is built in such a way that the code
generation for all kind of call expressions are eventually handled in
one common routine. For example, in the case of virtual function
calls the adjustment of the this pointer happens before calling that
routine. We placed the emission of our instrumentation code inside
that routine. As a result, special cases such as the this adjustment
are automatically handled; we do not have to manually adjust the
this pointer when we substitute a virtual function.

Contradictory to -finstrument-functions, by instrument-
ing the call expressions (and not the function body) we have the
convenience that we do not have to recompile dependant libraries
if the call expression is in a code outside of the library. This has
a clear advantage in case of system libraries, third party shared li-
braries and security critical applications where we have to evade
library interposing.

5.2 Runtime Library
The main purpose of the runtime library is to implement the
__fake_hook function which is referenced from the instrumented
code. The realization of this hook function has to find the related
function pointer in case of an active substitution. Essentially, it is
a simple pointer to pointer mapping which may be implemented
with a simple hash function. However, in order to make the lookup
as fast as possible, we chose to implement the mapping with a sim-
ple offsetting into the virtual memory (shadow memory). During
program startup – more precisely, when our shared object is loaded
– we initialize the shadow memory with the help of the mmap [34]
system call.

We assume that a size of a function definition is at least 1 byte,
since it has to contain at least a return instruction. Let N denote
the size of a pointer in bytes of a specific architecture. Since we
have to store a function pointer for every function, we have to re-
serve a shadow memory which is N times bigger than the normal
virtual address space which holds the function definitions. Modern
compilers on x64 systems with -O2 optimization generate function
definitions to be aligned to a 16 byte boundary; they achieve this
usually by emitting additional nop instructions. Therefore, on such
systems where all function addresses are aligned, it might be feasi-
ble to reserve a smaller shadow memory. If the mmap system call is
called with the MAP_ANONYMOUS argument then it guarantees that
the reserved memory is initialized to zero. Note that in practice the
OS does not zero out the mapped region during the mapping, only
at the moment when a virtual addressed is being accessed the first
time. We divide the user-space virtual memory into two different
regions. Low memory and high memory. We handle the memory
mapping differently for each region. For instance, on macOS the
memory is partitioned as follows:

[0x7f0000000000, 0x7fffffffffff] || HighMem
[0x120000000000, 0x19ffffffffff] || HighShadow
[0x020000000000, 0x11ffffffffff] || LowShadow
[0x000000000000, 0x01ffffffffff] || LowMem

Let addr denote the original address ,shadowAddr the address
of the corresponding shadow and shadowOffset the offset for
a region. We calculate the shadow address with this formula:
shadowAddr = addr∗N+shadowOffset(region(addr)). By
using the shadow memory instead of a simple hash map we trade
execution time for space. The program occupies terabytes in virtual
memory, however the resident (physical) memory usage is equal to
the number of used substitutions multiplied with N . More specifi-
cally, operating systems do not reserve the specific physical pages
to the process until there is no write to that memory area. Conse-
quently, those memory pages which contain the shadow values of
substituted functions will be resident physical pages registered in
the process page table. In practice, this means only a few kilobytes
of additional physical memory usage (given a page has 4kb size
and not taking into account the Linux specific huge pages).

During program startup we must make sure that our shared ob-
ject gets initialized before the first function call. Our prototype
achieve this by setting the constructor attribute [13] on the ini-
tializer function of the shared object. If there are other shared li-
braries linked to the final executable with such initializer functions,
then it is the user’s responsibility to ensure that our library is ini-
tialized first.

Another purpose of the runtime library is to provide the user
interface to setup the function substitutions. Replacing a function
in C is pretty simple, the shared object defines a function for that:

_substitute_function((const char*)&foo,
(const char*)&fake_foo);

We may use the SUBSTITUTE macro in case of C++ to replace
functions; this construct is more generic because it also supports

Compile-Time Function Call Interception to Mock Functions in C/C++ 5 2018/2/7

1 template <typename Class, typename MemPtr>
2 const char *
3 address_of_virtual_fun(const Class *aClass,
4 MemPtr memptr) {
5 const char **vtable = *(const char ***)aClass;
6

7 struct pointerToMember {
8 size_t pointerOrOffset;
9 ptrdiff_t thisAdjustment;

10 };
11

12 pointerToMember p;
13 memcpy(&p, &memptr, sizeof(p));
14

15 static const size_t pfnAdjustment = 1;
16 size_t offset =
17 (p.pointerOrOffset - pfnAdjustment) /
18 sizeof(char *);
19

20 return vtable[offset];
21 }

Figure 4. Get the address of a virtual function (Itanium C++ ABI)

struct B {
virtual void foo();

};
struct D : B {

void foo() override;
};

Figure 5. A simple class hierarchy with a virtual function

member functions. Note that we have to include the header file
attached to the runtime library, also we have to link with it. Our
implementation is thread safe if there are multiple threads calling
the very same function. Although, there is a race condition if one
thread is calling the specified function while another thread is
setting up the substitution; in such cases, the user code must ensure
thread safety.

5.3 Virtual Functions
A pointer-to-member function may have a different layout in case
of virtual functions than in case of regular member functions.
Therefore, we cannot just simply cast a virtual function pointer to
a void pointer.

5.3.1 ABI dependent substitution
Without compiler support, we can get the address of a virtual
function in an architecture dependent way. On Figure 4 we present
how we can get the address in case of the Itanium C++ ABI [21].
First, we receive the vtable from an object by dereferencing its
vpointer (line 5). The vpointer is the first element in the object. We
interpret the bits of the pointer to member (memptr) as an instance
of the aggregate class pointerToMember (lines 7-13). Next, we
setup the architecture dependent function pointer adjustment (line
15). Then, we get the offset and return with the appropriate element
in the vtable (lines 16-20).

The API in our runtime library provides a function template,
which we could use to replace virtual functions by exploiting the
above presented technique. Let us consider the class hierarchy
in Fig 5. If we wanted to replace the foo() function when the
dynamic type was D then we had to get a pointer to such an instance:

B* dummy = new D;
SUBSTITUTE_VIRTUAL(&D::foo, dummy, &D_fake_foo);

However, to replace the function in the base class as well, we had
to have a pointer to an instance whose dynamic type was B:

B* dummy = new B;
SUBSTITUTE_VIRTUAL(&B::foo, dummy, &B_fake_foo);

5.3.2 New compiler intrinsic
The SUBSTITUTE_VIRTUAL template is ABI dependent and it also
requires a reference to an existing object. Therefore, we further
investigated our options to find a better alternative without those
restrictions.

Generally speaking, in order to replace functions we just need
an identifier for each function – virtual or not – which is unique in
the program. Actually, each function has such a unique identifier,
and it is its own address in the program’s virtual memory. Unfortu-
nately, there is no valid C++ language construct to get this unique
identifier. Nevertheless, GCC has implemented this feature [12],
but sadly Clang did not. Clang developers claim that this feature
is fundamentally broken, because when we use it then the proper
adjustment of the this pointer may be elided [25]. Still, our tech-
nique could use this feature since our compiler instrumentation in-
tervenes after the this adjustment thunk is emitted. Thus, we im-
plemented this functionality in the Clang compiler, so we are able
to use it within our implementation, hidden from the users and en-
abled only in test code.

Considering the previous example in Fig 5, the replacement of
the foo() function when the dynamic type is D has the following
form:

SUBSTITUTE(D::foo, D_fake_foo);

This is the very same form which we can use to replace free
functions or non-virtual member functions.

Internally, the SUBSTITUTE macro expands to a call to
_substitute_function and the arguments of that function are
generated by our new compiler intrinsic:

#define SUBSTITUTE(src, dst) \
do { \

_substitute_function(\
(const char *)__function_id src, \
(const char *)__function_id dst); \

} while (0)

We modified the compiler to parse a new kind of unary expression
when the __function_id literal is given and the test specific
instrumentation is enabled. In case of free functions and static
member functions this unary expression has the very same type
which we would get in case of the ”address of” unary expression:

void foo();
void bar() {

auto p = & foo; // void (*)()
auto q = __function_id foo; // void (*)()

}

However in case of non-static member functions the two expres-
sions yield different types:

struct X { void foo(); virtual void bar(); };
void bar() {

auto p = & X::foo; // void (X::*)()
auto q = __function_id X::foo; // void (*)()
auto r = __function_id X::bar; // void (*)()

}

At runtime the value of these expressions are evaluated to hold the
address of the specific raw function which can be identified by the
corresponding mangled name in the compiled binary’s text section.

5.4 Overload Resolution
We may have several functions with the same name but with differ-
ent parameters. Let us consider the below code:

Compile-Time Function Call Interception to Mock Functions in C/C++ 6 2018/2/7

1 #define SUBSTITUTE_BASE(src, dst) \
2 do { \
3 _substitute_function(\
4 (const char *)__function_id src, \
5 (const char *)__function_id dst); \
6 } while (0)
7

8 #define SUBSTITUTE_OVERLOAD(signature, src, dst) \
9 do { \

10 using SignAlias = signature; \
11 using FunPtr = SignAlias *; \
12 FunPtr funptr = __function_id src; \
13 _substitute_function(\
14 (const char *)funptr, \
15 (const char *)__function_id dst); \
16 } while (0)
17

18 #define GET_MACRO(_1, _2, _3, NAME, ...) NAME
19 #define SUBSTITUTE(...) \
20 GET_MACRO(__VA_ARGS__, SUBSTITUTE_OVERLOAD, \
21 SUBSTITUTE_BASE)(__VA_ARGS__)

Figure 6. The SUBSTITUTE macro as a dispatcher

struct X {
int foo(int) { return 1; }
int foo(double) { return 2; }

}
int X_fake_foo_i(X*, int);

Normally, if we would like to get the address of X::foo(int) we
have to explicitly cast a function pointer to the appropriate type:

int(X::*mfp)(int) = & X::foo;

Here, we define a pointer variable with the name mfp which has the
type int(X::*)(int) and it holds the address of X::foo. In case
of the __function_id intrinsic we have to do the same, but the
type will be different:

int(*mfid)(int) = __function_id X::foo;

For safety reasons, the users of our instrumentation must not use
the __function _id directly, but they can use the three parameter
form of the provided SUBSTITUTE macro to replace an overloaded
function. For example, to replace X::foo with the X_fake_foo_i
free function we have to write:

SUBSTITUTE(int(int), X::foo, X_fake_foo_i);

Actually, the SUBSTITUTE macro is implemented in terms of
three other macros. In Fig 6, the GET_MACRO dispatches be-
tween the two different flavors of the SUBSTITUTE macro. The
SUBSTITUTE_BASE macro has two parameters while
SUBSTITUTE_OVERLOAD has three parameters. In the
SUBSTITUTE_OVERLOAD macro we handle the case where an addi-
tional signature is passed in as the first parameter. First we create
a type alias to the signature (line 10) then we create yet an other
alias to the type of the function pointer (line 11). By using these
two type aliases we can conveniently handle both the free functions
and the member functions with one macro.

5.5 Other Special Cases
A few standard library functions, such as abort and exit, cannot
return. Some programs define their own functions that never return.
We can declare them noreturn to tell the compiler this fact The
compiler can optimize without regard to what would happen if
a noreturn function ever did return. This makes slightly better
code.[13]. Our prototype supports the substitution of functions with
the noreturn attribute with functions which do return. We achieve
this by generating such code for the call expression which we

would generate in case of normal functions on the branch where
the substitution is active.

Generally, during compilation, functions are not inlined un-
less optimization is specified. For functions declared inline, the
always_inline attribute [13] inlines the function even if no op-
timization level was specified. Our implementation makes it possi-
ble to replace always-inline functions, if a special program option
is passed for the compiler. Naturally, the given function definition
will not be inlined and it will be emitted as a standalone function
with an address. However there are special cases with always-inline
function declarations. For instance, in the case of the libcxx library
– which is one standard C++ library implementation – most of the
getters and setters have the always_inline attribute. For example,
the basic_string class template declares c_str() as always in-
line but there is an extern template declaration in the <string>
header for basic_string<char>. Also, there is an implicit tem-
plate instantiation of basic_string<char> which does not ex-
pose c_str(), as that is declared to be always-inline. When we
turn on our instrumentation, the generated object file has an unde-
fined reference to c_str(), since the code is not emitted because
of the extern template declaration. To make the instrumentation
work either we have to recompile libcxx with our instrumentation
enabled and we have to link against the instrumented libcxx, or we
have to eliminate somehow the extern template declaration. The
latter is possible in one of our branch of the libcxx repository. Note
that we did not experience this interesting case with the GNU stan-
dard C++ library implementation on Linux (GCC/6.2 version).

A C++ constexpr function cannot be replaced when it is
used in a compile-time expression. However, it can be replaced
whenever it is used within a runtime context:

constexpr int foo(int p) { return p * p; }
int fake_foo(int p) { return p * p * p; }

TEST_F(FooFixture, Constexpr) {
SUBSTITUTE(foo, fake_foo);

// compile-time evaluation
static_assert(foo(2) == 4, "");

// runtime evaluation
EXPECT_EQ(foo(2), 8);

}

The expression inside the static_assert is forced to be evalu-
ated during the compilation.

6. Performance Evaluation
We did not notice any degradation in the run time and in the mem-
ory usage of the compilation process itself when our instrumenta-
tion was turned on. We measured the runtime performance of the
compiled instrumented code with the help of the Adobe C++ Per-
formance Benchmark [1]. Adobe’s primary goals with their bench-
mark are

• to help compiler vendors identify places where they may be able
to improve the performance of the code they generate

• to help developers understand the performance impact of using
different data types, operations, and C++ language features with
their target compilers and OSes.

We customized their benchmark to our needs. We removed test
suites about loop unrolling, constant folding and loop invariants.
We use exactly 3 different test suites, they measure overhead about
different abstractions:

• The function objects test suite compares the performance of
function pointers, functors, inline functors, standard functors,
and native comparison operators. (This test suite contains only
one test case.)

Compile-Time Function Call Interception to Mock Functions in C/C++ 7 2018/2/7

• The Stepanov abstraction test suite examines any change in
performance when adding abstraction to simple data types. For
instance, a value wrapped in a class may perform worse than a
raw value. Also, a value recursively wrapped in a struct or class
may perform worse than a raw value. There are several different
test cases in this test suite. For instance, there is a test case for
measuring the performance of an insertion sort when several
layers of abstractions are applied. One other test case measures
this abstraction penalty for heap sort.

• The Stepanov vector test suite examines any change in perfor-
mance when moving from pointers to vector iterators. Vector
iterators may perform worse than raw pointers. There is only
one test case in this test suite, which measure the performance
in case of applying quicksort on a std::vector.

Note that a good optimizing compiler with -O2 or -O3 optimization
level should not produce any performance penalty on behalf of
the abstractions. For instance, the MSVC 2008 compiler has an
abstraction penalty ratio not greater than 1.82 [2].

We compiled the test suites with different compiler flags and
we compared the absolute total time of run time of each test
cases. On Figure 7 we show the total time for the function ob-
jects test case with the different compiler setups. Our instrumen-
tation is turned on with the -fsanitize=mock option. By pro-
viding the -DSUB switch we define a macro. If that macro is
present then we do substitute functions in the busy loop of each
test cases. With the -finstrument-functions setup we define
the __cyg_profile functions in a standalone, separate translation
unit. Figure 8 presents the total absolute time for the vector use case
from the Stepanov vector test suite. Similarly, Figure 9 represents
the total time in one test case of the Stepanov abstraction suite.

On Figure 10 we can see the normalized total times. We dis-
play for each compiler setup the execution times of all the test
cases (normalized by the longest execution time per test case). The
benchmark computes the penalty of an abstraction by dividing the
run time of a test execution by the time it takes to run the same
algorithm but without any abstractions applied. We present the ab-
straction penalties on Figure 11. We can see that our instrumen-
tation causes similar penalty as -finstrument-functions when
the -O2 optimization is enabled.

Both our instrumentation and -finstrument-functions
causes performance degradation. In most cases our technique per-
forms similarly to -finstrument-functions. Our method ex-
changes two extra function calls (__cyg_profile_func_enter
and __cyg_profile_func_exit) with one extra function call to
__fake_hook followed by an efficient lookup.

When we enable our instrumentation and we do replace some
functions, then we may experience some performance degradation
compared to when we just simply enable the new instrumentation
(up to 15%). The reason behind this is that when we replace a
function we always take that branch which calls a function via
a pointer and in some cases we may loose important hardware
optimization opportunities (e.g. prefetching of instructions). Note
that there is an important optimization possibility in case of the
non-replacing branch. If we could include the definition of the
__fake_hook function when we emit the LLVM IR for a call
expression than the upcoming optimizer passes of the compiler
might be able to inline it. Also, by this inlining, on the non-
replacing branch, further inlining optimization opportunities might
be exploited. We plan to investigate the feasibility of this inlining
in the future.

We experienced that with our instrumentation, the size of the
binary may grow bigger. In the case of a simple C program we
measured around 15% (bzip2). In the case of a template heavy
program (Stepanov abstractions test suite) we measured that the

0 1 2 3 4 5 6 7
seconds

-O0 -finstrument-functions -fno-inline-functions

-O0 -finstrument-functions

-O0 -fsanitize=mock -DSUB

-O0 -fsanitize=mock -fno-inline-functions -DSUB

-O0 -fsanitize=mock -fno-inline-functions

-O0 -fsanitize=mock

-O2 -finstrument-functions -fno-inline-functions

-O2 -finstrument-functions

-O0

-O2 -fsanitize=mock -DSUB

-O2 -fsanitize=mock -fno-inline-functions -DSUB

-O2 -fsanitize=mock -fno-inline-functions

-O2 -fsanitize=mock

-O2

Figure 7. Total absolute time for function objects

0.0 0.5 1.0 1.5 2.0
seconds

-O0 -finstrument-functions -fno-inline-functions

-O0 -finstrument-functions

-O2 -finstrument-functions -fno-inline-functions

-O2 -finstrument-functions

-O0 -fsanitize=mock -fno-inline-functions -DSUB

-O0 -fsanitize=mock -DSUB

-O0 -fsanitize=mock -fno-inline-functions

-O0 -fsanitize=mock

-O0

-O2 -fsanitize=mock -DSUB

-O2 -fsanitize=mock -fno-inline-functions -DSUB

-O2 -fsanitize=mock -fno-inline-functions

-O2 -fsanitize=mock

-O2

Figure 8. Total absolute time for vector quicksort

executable could be up to 3 times bigger compared to an -O2
optimized binary. We measured very similar size growth in case
of the -finstrument-functions feature.

We performed the measurements on a Linux machine with an
Intel(R) Core(TM) i7-4610M CPU @ 3.00GHz processor and with
16GB RAM. The given CPU is a laptop-class hardware that scales
the frequency dynamically from 0.8Ghz to 3.7Ghz, therefore we
turned off turbo boost and frequency scaling by using the appropri-
ate ACPI kernel driver.

Our measurement scripts are publicly available [38] and the
measurements can be reproduced easily in other machines.

7. Limitations And Future Work
Our prototype implementation works only on 64 bit x86 systems.
More specifically, we tested it on macOS El Capitan and on Ubuntu
Linux 16.04 and 16.10. Since we have to map a relatively big
shadow memory, supporting 32 bit systems might require a dif-
ferent lookup algorithm which might not be as efficient than the
simple offsetting; for instance, we could use a simple hash map
implementation instead.

Replace the operator() of a lambda is not supported unless
we can take the address of the lambda. Similarly, member functions

Compile-Time Function Call Interception to Mock Functions in C/C++ 8 2018/2/7

0.0 0.5 1.0 1.5 2.0 2.5
seconds

-O0 -fsanitize=mock -fno-inline-functions -DSUB

-O0 -finstrument-functions

-O0 -finstrument-functions -fno-inline-functions

-O0 -fsanitize=mock -DSUB

-O0 -fsanitize=mock -fno-inline-functions

-O0 -fsanitize=mock

-O2 -fsanitize=mock -fno-inline-functions -DSUB

-O2 -fsanitize=mock -fno-inline-functions

-O2 -finstrument-functions -fno-inline-functions

-O2 -finstrument-functions

-O2 -fsanitize=mock -DSUB

-O2 -fsanitize=mock

-O0

-O2

Figure 9. Total absolute time for abstraction insertion sort

0.0 0.2 0.4 0.6 0.8 1.0

-O0 -finstrument-functions -fno-inline-functions

-O0 -finstrument-functions

-O0 -fsanitize=mock -fno-inline-functions -DSUB

-O0 -fsanitize=mock -fno-inline-functions

-O0 -fsanitize=mock -DSUB

-O0 -fsanitize=mock

-O0

-O2 -finstrument-functions -fno-inline-functions

-O2 -finstrument-functions

-O2 -fsanitize=mock -fno-inline-functions -DSUB

-O2 -fsanitize=mock -fno-inline-functions

-O2 -fsanitize=mock -DSUB

-O2 -fsanitize=mock

-O2

Figure 10. Normalized total absolute times

of structs/classes which are defined inside a function cannot be
replaced, because there is no valid expression to get their address.
Our technique relies on that we should be able to get the address
of the function we want to substitute. In case of constructors and
destructors we cannot get their address with any standard C++
expression. Still, replacing constructors or destructors would be
a valuable contribution in the domain of testing, thus this is an
important area for further research.

There is an important optimization possibility in case of the
non-replacing branch as we described in Section 6. Our prototype
uses 8 bytes for each function address in the shadow memory. How-
ever we support only replacing of user-space functions, therefore
it would be enough to use 6 bytes. Also, on systems where the
function definitions are all aligned it might be possible to allocate
smaller shadow memory.

0 20 40 60 80 100 120 140

Vector Insertion Sort Penalty

Vector Accumulate Penalty

Abstraction Quicksort Penalty

Abstraction Insertion Sort Penalty

Abstraction Accumulate Penalty

Vector Heap Sort Penalty

Abstraction Heap Sort Penalty

Vector Quicksort Penalty

- -O2

- -O2 -fsanitize=mock

- -O2 -fsanitize=mock -DSUB

- -O2 -fsanitize=mock -fno-inline-functions

- -O2 -fsanitize=mock -fno-inline-functions -DSUB

- -O2 -finstrument-functions

- -O2 -finstrument-functions -fno-inline-functions

Figure 11. Abstraction penalty

It is worth the effort to investigate another optimization possi-
bility: to use a hybrid run-time and compile-time FCI technique,
similarly as XRay does. We could insert no-op sleds before the call
expression of the original function instead of explicitly emitting
the two basic blocks (entry and then in Fig 3) which handle the
call of the mock function before the cont block. It is a hard open
question how could we handle the variable length of these basic
blocks. During runtime if the function is not replaced, these no-op
sleds would be executed, however if the function is replaced then
the runtime library could overwrite these no-ops with the appropri-
ate additional basic blocks. Note, we should also pad with no-ops
the generated code for the phi node to be able to overwrite the
corresponding parts. We plan to investigate the feasibility of these
performance opportunities in the future.

Currently we do not have any check to enforce that the original
function and its replacement have the same signature. In the future
we plan to create a checking function template for the substitutions.

8. Related Work
The different function call interception techniques are explained
in details by Kang [22]. The author also discusses aspect-oriented
programming implementation techniques for intercepting method
calls.

The four-phase test automation pattern is introduced by Meszaros
[39] and the given-when-then pattern is described by North [43].
Feathers describes different techniques about testing legacy code in
his book [10]. He introduces the concept of seams via we can alter
behaviour without changing the original unit. Rüegg and Sommer-
lad elaborate this concept in C++ [47].

There are many software error checking tools which are based
on some kind of instrumentation. A large number of memory error
detectors are based on binary instrumentation. For example, Val-
grind (Memcheck) [42], Dr. Memory [5], Purify [18], Intel Inspec-
tor [19]. The most popular compiler instrumentation based error
checker tools are the AddressSanitizer [49], ThreadSanitizer [48],
XRay instrumentation [4, 26] and other different sanitizers sup-

Compile-Time Function Call Interception to Mock Functions in C/C++ 9 2018/2/7

ported by the LLVM/Clang infrastructure [29, 30]. Our instrumen-
tation technique was inspired by the AddressSanitizer, we reused
many ideas from its implementation (e.g shadow memory).

Shadow memory is often used by different error checker soft-
ware. The above mentioned AddressSanitizer and ThreadSanitizer
both use shadow memory to store metadata for a specific piece of
memory. AddressSanitizer uses a shadow space scaled down to one
eight of the normal address space and can be easily used on 32
bit systems. However, ThreadSanitizer uses 8 times larger shadow
memory than the normal address range, therefore support for 32-
bit platforms is problematic and is not planned by the maintainers.
We can find users of the shadow memory mapping outside of the
LLVM universe as well. For instance Valgrind [41] TaintTrace [7],
LIFT [46], Bound-Less [6], Umbra [52, 53] and LBC [17].

9. Conclusion
Function call interception is a technique of intercepting function
calls at program runtime. Without directly modifying the original
code, FCI enables to undertake certain operations before and/or
after the called function or even to replace the intercepted call.

FCI dynamic techniques perform instrumentation at load time
or at runtime. Static techniques are applied either at the applica-
tion binary level or during the compilation proper (compiler instru-
mentation). With existing compiler instrumentation techniques for
languages like C and C++ we can provide hooks which are called
before and after a function, but we cannot replace an intercepted
function call.

Test seams are used to create non-intrusive tests for legacy sys-
tems, some of these seams are often realized via an FCI technique.
We introduced our new compiler instrumentation for C and C++
programs, which makes it possible to replace the intercepted func-
tion call. While most of the existing instrumentation methods mod-
ify the function to call we instrument the caller side. We substitute
the actual call with a small code snippet in compilation time, which
decides at runtime whether the original or a replacement function
is about to call. The decision is made using shadow memory and an
offset to minimize runtime overhead.

In contrast to other seams, our new instrumentation seam keeps
the test setup code close to the other phases of the test. The tech-
nique makes it feasible to write non-intrusive tests which follow the
given-when-then test pattern. This way, our method could help to
implement high-quality tests for legacy software systems.

Compared to existing compile-time instrumentation solutions,
our technique does not require the modification or even the recom-
pilation of the intercepted functions, which is a possible advantage
in case of legacy code, system libraries, third party shared libraries
or in situations when we have to avoid library interposing. Our tech-
nique is also capable to substitute both C/C++ free functions as well
as C++ member functions.

We have created a prototype implementation using the LLVM/-
Clang compiler infrastructure. The modified C++ compiler re-
places the call expressions and a runtime library looks up the
substitutions. We have evaluated the prototype using various
benchmarks. We measured the runtime overhead is similar to
the overhead caused by the other compile-time instrumentation,
-finstrument-functions.

References
[1] Adobe. C++ performance benchmarks, 2017. URL https://stlab.

adobe.com/performance.

[2] Adobe. Abstraction penalty with msvc 2008, 2017. URL https://
stlab.adobe.com/wiki/index.php/Performance/Analysis/
Example3.

[3] Kumar Avijit, Prateek Gupta, and Deepak Gupta. Binary rewriting
and call interception for efficient runtime protection against buffer
overflows: Research articles. Softw. Pract. Exper., 36(9):971–998,
July 2006. ISSN 0038-0644. doi: 10.1002/spe.v36:9. URL http:
//dx.doi.org/10.1002/spe.v36:9.

[4] Dean Michael Berris, Alistair Veitch, Nevin Heintze, Eric Anderson,
and Ning Wang. Xray: A function call tracing system. 2016.

[5] Derek Bruening and Qin Zhao. Practical memory checking with
dr. memory. In Proceedings of the 9th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO ’11,
pages 213–223, Washington, DC, USA, 2011. IEEE Computer So-
ciety. ISBN 978-1-61284-356-8. URL http://dl.acm.org/
citation.cfm?id=2190025.2190067.

[6] Mark Brünink, Martin Süßkraut, and Christof Fetzer. Boundless mem-
ory allocations for memory safety and high availability. In 2011
IEEE/IFIP 41st International Conference on Dependable Systems
Networks (DSN), pages 13–24, June 2011. doi: 10.1109/DSN.2011.
5958203.

[7] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. Tainttrace: Ef-
ficient flow tracing with dynamic binary rewriting. In Proceedings of
the 11th IEEE Symposium on Computers and Communications, ISCC
’06, pages 749–754, Washington, DC, USA, 2006. IEEE Computer
Society. ISBN 0-7695-2588-1. doi: 10.1109/ISCC.2006.158. URL
http://dx.doi.org/10.1109/ISCC.2006.158.

[8] Shigeru Chiba. A metaobject protocol for c++. SIGPLAN Not., 30
(10):285–299, October 1995. ISSN 0362-1340. doi: 10.1145/217839.
217868. URL http://doi.acm.org/10.1145/217839.217868.

[9] clang.llvm.org. Clang command line argument refer-
ence, 2017. URL https : / / clang . llvm . org / docs /
ClangCommandLineReference.html.

[10] Michael Feathers. Working Effectively with Legacy Code. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2004. ISBN 0131177052.

[11] Martin Fowler. Givenwhenthen. URL https://martinfowler.
com/bliki/GivenWhenThen.html.

[12] gcc.gnu.org. Extracting the function pointer from a bound pointer
to member function, 2017. URL https://gcc.gnu.org/
onlinedocs/gcc- 4.9.0/gcc/Bound- member- functions.
html.

[13] gcc.gnu.org. Declaring attributes of functions, 2017. URL https:
//gcc.gnu.org/onlinedocs/gcc- 4.3.0/gcc/Function-
Attributes.html.

[14] gcc.gnu.org. Program instrumentation options, 2017. URL https://
gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.
html.

[15] gnu.org. Using gnu ld, 2017. URL ftp://ftp.gnu.org/old-
gnu/Manuals/ld-2.9.1/html_node/ld_3.html.

[16] gnu.org. Gdb: The gnu project debugger, 2017. URL https://www.
gnu.org/software/gdb/.

[17] Niranjan Hasabnis, Ashish Misra, and R. Sekar. Light-weight bounds
checking. In Proceedings of the Tenth International Symposium on
Code Generation and Optimization, CGO ’12, pages 135–144, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1206-6. doi: 10.
1145/2259016.2259034. URL http://doi.acm.org/10.1145/
2259016.2259034.

[18] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks
and access errors. In In Proc. of the Winter 1992 USENIX Conference,
pages 125–138, 1991.

[19] Intel. Intel inspector, 2017. URL https://software.intel.com/
en-us/intel-inspector-xe.

[20] Intel. Pintool api reference - rtn: Routine object, 2017. URL https:
//software.intel.com/sites/landingpage/pintool/docs/
53271/Pin/html/group__RTN__BASIC__API.html.

[21] Intel, CodeSourcery, Compaq, EDG, HP, IBM, Red Hat, and SGI.
Itanium c++ abi, 2017. URL http://refspecs.linuxbase.org/
cxxabi-1.83.html.

Compile-Time Function Call Interception to Mock Functions in C/C++ 10 2018/2/7

[22] Pilsung Kang. Function call interception techniques. Software: Prac-
tice and Experience, pages n/a–n/a. ISSN 1097-024X. doi: 10.
1002/spe.2501. URL http://dx.doi.org/10.1002/spe.2501.
spe.2501.

[23] Gregor Kiczales and Erik Hilsdale. Aspect-oriented programming.
SIGSOFT Softw. Eng. Notes, 26(5):313–, September 2001. ISSN
0163-5948. doi: 10.1145/503271.503260. URL http://doi.acm.
org/10.1145/503271.503260.

[24] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of
the 2004 International Symposium on Code Generation and Optimiza-
tion (CGO’04), Palo Alto, California, Mar 2004.

[25] llvm.org. Clang will not accept a conversion from a bound pmf to
a regular method pointer, 2017. URL https://bugs.llvm.org/
show_bug.cgi?id=22121.

[26] llvm.org. Xray instrumentation, 2017. URL https://llvm.org/
docs/XRay.html.

[27] llvm.org. clang: a c language family frontend for llvm, 2017. URL
http://clang.llvm.org.

[28] llvm.org. Llvm language reference manual, 2017. URL http:
//llvm.org/docs/LangRef.html.

[29] llvm.org. Memory sanitizer, 2017. URL https://clang.llvm.
org/docs/MemorySanitizer.html.

[30] llvm.org. Undefined behavior sanitizer, 2017. URL https://clang.
llvm.org/docs/UndefinedBehaviorSanitizer.html.

[31] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: Building customized program analysis tools
with dynamic instrumentation. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’05, pages 190–200, New York, NY, USA, 2005.
ACM. ISBN 1-59593-056-6. doi: 10.1145/1065010.1065034. URL
http://doi.acm.org/10.1145/1065010.1065034.

[32] Linux Programmer’s Manual. dlsym, dlvsym - obtain address of a
symbol in a shared object or executable, 2017. URL http://man7.
org/linux/man-pages/man3/dlsym.3.html.

[33] Linux Programmer’s Manual. ld.so, ld-linux.so - dynamic link-
er/loader, 2017. URL http://man7.org/linux/man-pages/
man8/ld.so.8.html.

[34] Linux Programmer’s Manual. mmap, munmap - map or unmap files or
devices into memory, 2017. URL http://man7.org/linux/man-
pages/man2/mmap.2.html.

[35] Linux Programmer’s Manual. ptrace - process trace, 2017. URL
http://man7.org/linux/man-pages/man2/ptrace.2.html.

[36] Robert C Martin. Clean code: a handbook of agile software crafts-
manship. Pearson Education, 2009.

[37] Gábor Márton. Access private, 2017. URL https://goo.gl/
ynaZv5.

[38] Gábor Márton. Instrumentation for testing, 2017. URL https:
//github.com/martong/finstrument_mock.

[39] Gerard Meszaros. xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[40] mockator.com. An eclipse cdt plug-in for c++ seams and mock
objects. URL http://mockator.com/. http://mockator.com/.

[41] Nicholas Nethercote and Julian Seward. How to shadow every byte of
memory used by a program. In Proceedings of the 3rd International
Conference on Virtual Execution Environments, VEE ’07, pages 65–
74, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-630-1. doi:
10.1145/1254810.1254820. URL http://doi.acm.org/10.1145/
1254810.1254820.

[42] Nicholas Nethercote and Julian Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. SIGPLAN Not., 42(6):
89–100, June 2007. ISSN 0362-1340. doi: 10.1145/1273442.1250746.
URL http://doi.acm.org/10.1145/1273442.1250746.

[43] D North. Introducing bdd, better software magazine, 2006.

[44] Pradeep Padala. Playing with ptrace, Part I. 103, November 2002.
ISSN 1075-3583 (print), 1938-3827 (electronic).

[45] Pradeep Padala. Playing with ptrace, Part II. 104, December 2002.
ISSN 1075-3583 (print), 1938-3827 (electronic).

[46] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou,
and Youfeng Wu. Lift: A low-overhead practical information flow
tracking system for detecting security attacks. In Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 39, pages 135–148, Washington, DC, USA, 2006. IEEE
Computer Society. ISBN 0-7695-2732-9. doi: 10.1109/MICRO.2006.
29. URL https://doi.org/10.1109/MICRO.2006.29.

[47] Michael Rüegg and Peter Sommerlad. Refactoring towards seams in
c++. In Proceedings of the 7th International Workshop on Automation
of Software Test, AST ’12, pages 117–123, Piscataway, NJ, USA,
2012. IEEE Press. ISBN 978-1-4673-1822-8. URL http://dl.
acm.org/citation.cfm?id=2663608.2663632.

[48] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer:
Data race detection in practice. In Proceedings of the Workshop on
Binary Instrumentation and Applications, WBIA ’09, pages 62–71,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-793-6. doi:
10.1145/1791194.1791203. URL http://doi.acm.org/10.1145/
1791194.1791203.

[49] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. Addresssanitizer: A fast address sanity checker.
In Proceedings of the 2012 USENIX Conference on Annual Tech-
nical Conference, USENIX ATC’12, pages 28–28, Berkeley, CA,
USA, 2012. USENIX Association. URL http://dl.acm.org/
citation.cfm?id=2342821.2342849.

[50] Olaf Spinczyk, Daniel Lohmann, and Matthias Urban. Advances in
aop with aspectc++. In Proceedings of the 2005 Conference on New
Trends in Software Methodologies, Tools and Techniques: Proceed-
ings of the Fourth SoMeT W05, pages 33–53, Amsterdam, The Nether-
lands, The Netherlands, 2005. IOS Press. ISBN 1-58603-556-8. URL
http://dl.acm.org/citation.cfm?id=1563296.1563301.

[51] Sai Venkatakrishnan. Build operate check clear - test pattern. URL
http://developer-in-test.blogspot.hu/2009/05/build-
operate-check-clear-test-pattern.html.

[52] Qin Zhao, Derek Bruening, and Saman Amarasinghe. Efficient mem-
ory shadowing for 64-bit architectures. In Proceedings of the 2010
International Symposium on Memory Management, ISMM ’10, pages
93–102, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0054-
4. doi: 10.1145/1806651.1806667. URL http://doi.acm.org/
10.1145/1806651.1806667.

[53] Qin Zhao, Derek Bruening, and Saman Amarasinghe. Umbra: Effi-
cient and scalable memory shadowing. In Proceedings of the 8th An-
nual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’10, pages 22–31, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-635-9. doi: 10.1145/1772954.1772960.
URL http://doi.acm.org/10.1145/1772954.1772960.

Compile-Time Function Call Interception to Mock Functions in C/C++ 11 2018/2/7

